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Stability of Control System 
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   Stability is the most important system specification. If a system is unstable transient 

response and steady-state errors are moot points. An unstable system cannot be designed for 

a specific transient response or steady-state error requirement. 

Transfer Function: The transfer function G(S) of the plant is ratio of Laplace transform of 

output to the Laplace transform of input considering initial conditions to zero. 

 

 

 

 

Transfer function helps us to check: 

1. The stability of the system 

2. Time domain and frequency domain characteristics of the system  

3. Response of the system for any given input 

Transfer Function has the form:  

 

 

 

Then, 

• Roots of denominator polynomial of a transfer function are called ‘poles’. 

G(S) Y(S) U(S) 
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•  Roots of numerator polynomial of a transfer function are called ‘zeros’. 

• The poles and zeros of the system are plotted in s-plane to check the stability of the 

system. 

 

 

 

 

  

 

 

 

                         s-plane 

• If all the poles of the system lie in left half plane the system is said to be Stable. 

• If any of the poles lie in right half plane the system is said to be unstable. 

• If pole(s) lie on imaginary axis the system is said to be marginally stable.  

• The location of a pole in the complex plane is denoted symbolically by a cross ( x), 

and the location of a zero by a small circle (0). The s-plane including the locations of 

the finite poles and zeros of F ( s ) is called the pole-zero map of F ( s ) . A similar 

comment holds for the z-plane. 
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Complex-Variable Concept 

 

 

COMPLEX PLANE POLEZERO MAPS: 

The rational functions F ( s ) for continuous systems can be rewritten as 

 

 

=T.F 

 

where the terms s + zi are factors of the numerator polynomial and the terms s +pi, are factors 

of the denominator polynomial. 

EX 1: Let F ( s ) be given by 
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which can be rewritten as:  

 

F ( s ) has finite zeros at s = - 1 and s = 2. F(s) has finite poles at s = - 3, s = - 1 - j , and s = -

l+j. The pole-zero map of F ( s ) is shown in Fig. below 

 
 

There are two kinds of stability definitions in control system study.  

 Absolute Stability:  

 

 Relative Stability:  

 

Methods of  determining stability 
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Characteristic Equation: 

It is the equation formed by putting the denomenter of the T.F of the system equal to zero.   

 ( )

 ( )
 

 ( )

   ( ) ( )
                                   

The Characteristic Equation (C.E) of the system is given by: 

 

 

 

 

Most linear closed-loop systems have closed-loop transfer functions of the form: 

 

0)()(1  sHsG
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    A simple criterion, known as Routh's stability criterion, enables us to determine the 

number of closed-loop poles that lie in the right-half s plane without having to factor the 

denominator polynomial. 

 

Routh's Stability Criterion: 

   Routh's stability criterion tells us whether or not there are unstable roots in a polynomial 

equation without actually solving for them. This stability criterion applies to polynomials 

with only a finite number of terms. When the criterion is applied to a control system, 

information about absolute stability can be obtained directly from the coefficients of the 

characteristic equation. The procedure in Routh's stability criterion is as follows: 

1. Write the polynomial in s in the following form: 
 

 

where the coefficients are real quantities. We assume that an  ≠  0; that is, any zero root 

has been removed. 

2. If any of the coefficients are zero or negative in the presence of at least one positive 

coefficient, there is a root or roots that are imaginary or that have positive real parts. 

Therefore, in such a case, the system is not stable.  

3. If all coefficients are positive, arrange the coefficients of the polynomial in rows and 

columns according to the following pattern: 
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The process of forming rows continues until we run out of elements. (The total number 

of rows is n + 1.) The coefficients b1, b2, b3, and so on, are evaluated as follows: 

 

Then continue solve for b4 and b5 in the same way until we obtain zero. The same pattern of 

cross- multiplying the coefficients of the two previous rows 

 

 

 

 

 

 

The table is continued horizontally and vertically until only zeros are obtained. Any row can 

be multiplied by a positive constant before the next row is computed without disturbing the 

properties of the table. 

 If all the constants in the first column have the same sign (positive or negative) then, 

the system is stable. 

 If the first column have (positive and negative) then, the system is unstable. 

 If one of these values equal to zero then the system is critical and the value of critical 

amplifier gain can be obtained accordingly. 

 

EX 1: apply Routh's stability criterion to the following third-order polynomial:   
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where all the coefficients are positive numbers. The array of coefficients becomes: 

 

 

 

  The system will be stable if  

 

Ex 2: Make the Routh table for the system shown in Figure (a). 

SOL: The first step is to find the equivalent closed-loop system because we want to test the 

denominator of this function, not the given forward transfer function, for pole location. Using 

the feedback formula, we obtain the equivalent system of Figure (b). 

 

 

 

 

 

 

 

 

 

 

Ex 3: Find the range of gain, K, for the system of Figure below that will cause the 

system to be stable, unstable, and marginally stable. Assume K > 0.  
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SOL: First find the closed-loop transfer function as: 

 

 

Next form the Routh table shown as Table below 

 

 

1. Since K is assumed positive, we see that all elements in the first column are 

always positive except the s1 row. This entry can be positive, zero, or negative, 

depending upon the value of K. If K < 1386, all terms in the first column will be 

positive, then, the system be stable. 

2. If K > 1386, the s1 term in the first column is negative then, the system be 

unstable. 

3. If K =1386, we have an entire row of zeros. Then, the system is marginally stable 

 

Ex 4: determine the range of K for stability in Figure below. 
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Sol: The closed-loop transfer function is 

 

The characteristic equation is 

 

The array of coefficients becomes 

 

For stability, K must be positive, And all coefficients in the first column must be positive. 

Therefore, 
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Root Locus Method-introduction 
 
  The relative stability and the transient performance of a closed loop system are directly 

related to the location of the closed-loop roots of the characteristic equation in the s-plane. It 

is frequently necessary to adjust one or more system parameters in order to obtain suitable 

root location. 

  It is useful to determine the locus of roots in s-plane as a parameter varied since the roots is 

a function of the system’s parameter. The root locus technique is a graphical method for 

sketching the locus of roots in the s-plane as a parameter is varied and has been utilized 

extensively in control engineering practice. It provides the engineer with a measure of the 

sensitivity of roots of the system a variation in parameter being considered. The root locus 

technique may be used to great advantage in conjunction with the Routh-Hurwitz criterion. 

 

Root Locus Method Developed by Evans while he was a graduate student at UCLA. In 

designing a linear control system, we find that the root-locus method proves quite useful 

since it indicates the manner in which the open-loop poles and zeros should be modified so 

that the response meets system performance specifications. This method is particularly suited 

to obtaining approximate results very quickly. 

General Rules for Constructing Root Loci 

     We shall now summarize the general rules and procedure for constructing the root loci of 

the system shown in Figure below. First, obtain the characteristic equation: 
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1. Locate the poles and zeros o f G(s)H (s) on the s plane. The root-locus branches start 

from open-loop poles and terminate at zeros (finite zeros or zeros at infinity). 

2. Determine No. of loci of the plot is equal to the order of C. E 

3. Determine the root loci on the real axis. Root loci on the real axis are determined 

by open-loop poles and zeros lying on it. The complex-conjugate poles and zeros of 

the open-loop transfer function have no effect on the location of the root loci on the 

real axis because the angle contribution of a pair of complex-conjugate  poles or 

zeros is 360" on the real axis. 

4. Determine the asymptotes of root loci. 

  

 

 

where 

n-----> number of poles 

m-----> number of zeros 

For this Transfer Function  

 

 

 

  the number of distinct asymptotes is n – m 

5. Determine Point of intersection of asymptotes on real axis (or centroid of 

asymptotes) can be find as  out 

 

 

 

Ex: Determine the asymptotes of the root loci. 
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For  

 

 

  

 

  

 

 

6. Find the breakaway and break-in points. 

 
 The breakaway point corresponds to a point in the s plane where    multiple roots of 

the characteristic equation occur. It is the point from which the root locus branches leaves 

real axis and enter in complex plane. 

 The break-in point corresponds to a point in the s plane where multiple roots of the 

characteristic equation occur. It is the point where the root locus branches arrives at real axis. 

 

 The breakaway or break-in points can be determined from the roots of 

 

 It should be noted that not all the solutions of dK/ds=0 correspond to actual breakaway 

points.  

 If a point at which dK/ds=0 is on a root locus, it is an actual breakaway or break-in 

point.  

 Stated differently, if at a point at which dK/ds=0 the value of K takes a real positive 

value, then that point is an actual breakaway or break-in point. 

Ex: Determine the breakaway point or break-in point. 
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The characteristic equation of the system is 

 

 

 

 

  

The breakaway point can now be determined as 

  

 

In fact, evaluation of the values of K corresponding to 

 s=–0.4226 and s=–1.5774 yields  

 

 

 

 

 

 

 

 

 

7. Determine the points where root loci cross the imaginary axis. 
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The points where the root loci intersect the jw axis can be found easily by:  

(a) use of Routh's stability criterion  

(b) letting s = jw in the characteristic equation, equating both the real part and the 

imaginary part to zero, and solving for w and K. The values of w thus found give the 

frequencies at which root loci cross the imaginary axis. The K value corresponding to 

each crossing frequency gives the gain at the crossing point. 

 

EX: Determine the points where root loci cross the imaginary axis for C. E below: 

 

Sol: first method: 

The Routh Array Becomes 

 

 The value(s) of K that makes the system marginally stable is 6. 

• The crossing points on the imaginary axis can then be found by solving the 

auxiliary equation obtained from the s
2
 row, that is, 

 

      Which yields  

Second method 

023 23  Ksss
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   An alternative approach is to let s=jω in the characteristic equation, equate both the real 

part and the imaginary part to zero, and then solve for ω and K. 

• For present system the characteristic equation is  

 

 

  

 

Equating both real and imaginary parts of this equation to zero  

  

  

Which yields 
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8. Determine the angle of departure (angle of arrival) of the root locus from a complex 

pole (at a complex zero). To sketch the root loci with reasonable accuracy, we must 

find the directions of the root loci near the complex poles and zeros. If a test point is 

chosen and moved in the very vicinity of a complex pole (or complex zero), the sum 

of the angular contributions from all other poles and zeros can be considered to 

remain the same. Therefore, the angle of departure (or angle of arrival) of the root 

locus from a complex pole (or at a complex zero) can be found by subtracting from 

180" the sum of all the angles of vectors from all other poles and zeros to the 

complex pole (or complex zero) in question, with appropriate signs included. 

 

Angle of departure from a complex pole=180 - (sum of the angles of vectors to a 

complex pole in question from other poles) + (sum of the angles of vectors to a complex 

pole in question from zeros) 

 

 

 

Angle of arrival at a complex zero = 180 - (sum of the angles of vectors to a complex 

zero in question from other zeros) + (sum of the angles of vectors to a complex zero in 

question from poles) 
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Ex1: sketch the root locus of second order equation  

 ( ) ( )  
 (   )

(   )(   )
 

Sol: 

1.We have two poles: p1=-1 , p2=-2   n=2 

We have one zero z1=-4 m=1 

2. the number of distinct asymptotes is n – m=2-1=1 

3.  

 = 180 

4. 

 

5. breakaway point or break-in point. 
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Ex 2: Sketch the root loci of the control system shown in Figure below. 

  

Solution: 

The procedure for plotting the root loci is as follows: 

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative 

real axis between 0 and -1 and between -2 and -3. 

2. The number of open-loop poles and that of finite zeros are the same. This means that there 

are no asymptotes in the complex region of the s plane.  

3.Determine the breakaway and break-in points. The characteristic equation for the system is 

 

45.6,55.1

0108

02312112

2

22







orss

ss

ssss

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8



Control                                                                                                                                                                           Lec. 5 

 

Asst. Lec. Haraa Raheem Page 20 
 

The breakaway and break-in points are determined from 

 
 

as follows: 

 

 
Notice that both points are on root loci. Therefore, they are actual breakaway or break-in 

points. At point s = -0.634, the value of K is 

  

 

 

Because point s = -0.634 lies between two poles, it is a breakaway point, and because point 

s = -2.366 lies between two zeros, it is a break-in point.) 
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Ex 3: Sketch the root loci of    ( ) ( )  
(   )

(   )(       )
  

1.We have two poles: p1=-3 , p2=-1+j, p3=-1-j            n=3 

We have one zero z1=-2 m=1 

2. the number of distinct asymptotes is n – m=3-1=2 

3.  

 =     

4. 

 

  

Frequency-Response 

Methods and Stability 

    The frequency response of a system is defined as the steady-state response of the system to 

a sinusoidal input signal.  The sinusoid is a unique input signal, and the resulting output 

signal for a linear system, as well as signals throughout the system, is sinusoidal in the 

steady-state. Frequency-response methods were developed in 1930s and 1940s by Nyquist, 
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Bode, Nichols, and many others. The frequency-response methods are most powerful in 

conventional control theory. They are also indispensable to robust control theory 

 

Presenting Frequency-Response Characteristics in Graphical Forms: 

   The sinusoidal transfer function, a complex function of the frequency w, is characterized by 

its magnitude and phase angle, with frequency as the parameter. There are three commonly 

used representations of sinusoidal transfer functions: 

1. Bode diagram or logarithmic plot 

2. Nyquist plot or polar plot 

3. Log-magnitude-versus-phase plot (Nichols plots) 

 

1. Polar Plots 

  The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of G(jω) 

versus the phase angle of G(jω) on polar coordinates as ω is varied from zero to infinity. 

Thus, the polar plot is the locus of vectors   | (  )|  (  )  as ω is varied from zero to 

infinity. 

 

      

  

 

 

 

 

Polar Plot 
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  Each point on the polar plot of G(jω) represents the terminal point of a vector at a particular 

value of ω. The projections of G(jω) on the real and imaginary axes are its real and imaginary 

components.  

 the frequency response can be calculated by replacing s in the transfer      function by 

jw. 

 It will also be shown that the steady-state response can be given by 

             G(jω)=    , where R is the amplitude ratio of the output and input sinusoids and   

is the phase shift between the input sinusoid and the output sinusoid 

 Nyquist Stability Plot must be a closed contour 

 

 

 

 

Procedure of Nyquist Plot  
 

1. express the magnitude and phase equations in terms of w 

2. Estimate the magnitude and phase for different values of w 

3. Plot the curve and determine required performance metrics 

Transfer Function Component Representation: 

The polar plot of G(jω)=1/jω is the negative imaginary axis, since  

  

  

 

 

 

 

The polar plot of G(jω)=jω is the positive imaginary axis, since 
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For the sinusoidal transfer function 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph for above example  is the mirror image about the diameter of this semicircle. It is 

shown in Fig below by a dashed line. 
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Example1: Draw the polar plot of following open loop transfer function. 

 

SOL: 
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